
 

 

Portability Study of Android and iOS 

 
 

Brandon Stewart 

 

 
 

Problem Report submitted to the Benjamin M. Statler College of Engineering and Mineral 

Resources 

at West Virginia University in partial fulfillment of the requirements 

for the degree of 

 

 

 

Master of Science 

in 

Computer Science 

 

 

 

James Mooney, Ph.D., Chair 

Katerina Goseva-Popstojanova, Ph.D. 

Frances Van Scoy, Ph.D. 

 

 

Lane Department of Computer Science and Electrical Engineering 

 

 

Morgantown, West Virginia 

2012 

 

 

 

Keywords: Portability, Mobile Applications, Android, iOS 

  



 

 

ABSTRACT 

Portability Study of Android and iOS 

Brandon Stewart 

 

The Android and iOS platforms have emerged as the top platforms in the growing smartphone 

market.  This makes them the top targets for developers looking to deliver mobile applications to 

consumers.  However, development for each offers its own challenges. Not only do developers 

have to support a wide variety of hardware configurations, but each platform has its own distinct 

software development kit employing different programming languages.  This creates a challenge 

for developers wishing to port an application from one platform to the other, or develop an 

application for both simultaneously.  Developers are seemingly faced with either developing two 

distinct codebases or being locked in to a third party framework that targets multiple platforms.  

This problem report addresses this challenge.  A study is conducted to investigate the possibility 

of developing a highly portable codebase for the Android and iOS platforms.  A mobile 

application that serves as a client to a web service was designed and implemented twice on each 

platform.  The first implementation was a purely native application developed using only each 

platform’s language of choice.  The second implementation was developed with portability as a 

goal.  This was met by leveraging each platform’s ability to run web applications.  The resulting 

applications show that by using standard HTML and JavaScript, native mobile applications can 

be developed for each platform with a large amount of shared code. 



iii 

 

Acknowledgements 

I would like to thank each member of my committee.  This problem report draws inspiration 

from classes I took with each. 

Dr. Jim Mooney’s interest in software portability and the corresponding class provided the initial 

inspiration for the project.  Additionally his help as my advisor over the semesters has been 

invaluable. 

Dr. Katerina Goseva-Popstojanova’s classes have provided numerous helpful attempts at the art 

of reading and writing academic papers.  Her empirical methods class also helped provide the 

structure used in this problem report’s study design. 

Finally, Dr. Van Scoy’s enthusiasm for languages undoubtedly inspired me to create a project 

involving numerous programming languages.  She is most likely the subtle reason that Python 

was chosen in implementing part of the study.  



iv 

 

Table of Contents 

ABSTRACT .................................................................................................................................... ii 

Acknowledgements ........................................................................................................................ iii 

Table of Contents ........................................................................................................................... iv 

List of Figures ................................................................................................................................. v 

List of Tables .................................................................................................................................. v 

1. Introduction ................................................................................................................................. 1 

2. Problem Description ................................................................................................................... 2 

3. Study Design ............................................................................................................................... 4 

3.1. Web Service Requirements .................................................................................................. 4 

3.2. Mobile Application Requirements ....................................................................................... 7 

4. Application Implementations .................................................................................................... 10 

4.1. Notes Web Service ............................................................................................................. 10 

4.2. Native Android Application ............................................................................................... 12 

4.3. Native iOS Application ...................................................................................................... 13 

4.4. Portable Codebase .............................................................................................................. 14 

4.4.1. Android Application Modifications ........................................................................ 15 

4.4.2. iOS Application Modifications ............................................................................... 17 

5. Portability Analysis ................................................................................................................... 20 

6. Future Research ........................................................................................................................ 21 

7. Conclusion ................................................................................................................................ 22 

8. References ................................................................................................................................. 23 

 

  



v 

 

List of Figures 

Figure 1 – Notes system overview .................................................................................................. 4 

Figure 2 – Notes Web Service – Database Model .......................................................................... 5 

Figure 3 – Generic Success XML Message .................................................................................... 5 

Figure 4 – Generic Error XML Message ........................................................................................ 5 

Figure 5 – Note List XML .............................................................................................................. 7 

Figure 6 – Notes Web Service – Note List method ...................................................................... 11 

Figure 7 – Notes Web Service – Error XML template ................................................................. 11 

Figure 8 – Notes Web Service – Note list template ...................................................................... 12 

Figure 9 – Native Android Application – Login, Register, List, and Edit screens ....................... 13 

Figure 10 – Native iOS Application – Login, Register, List, and Edit screens ............................ 14 

Figure 11 – Portable Android Application Main Activity Code .................................................. 16 

Figure 12 – Portable Android Application – Login, Register, List, and Edit screens .................. 16 

Figure 13 – Portable iOS AppDelegate implementation .............................................................. 18 

Figure 14 – Portable iOS Application – Login, Register, List, and Edit screens ......................... 19 

List of Tables 

Table 1 – Lines of code in each application ................................................................................. 20 



1 

 

1. Introduction 

In the growing market of smartphones, the Android and iOS platforms have emerged as the 

platforms of choice by a large margin.  Recent sales figures indicate that these two platforms 

account for approximately 90% of all smartphone sales in the fourth quarter of 2011 [1].  This 

indicates extensive growth in a market in which they already have a combined majority share [2].  

As of January 2012, the Android operating system accounts for 49% of all current smartphone 

subscriptions with iOS having an additional 30%. 

The fact that these two platforms alone account for nearly 80% of the entire smartphone market 

makes them the obvious targets for developers wishing to tap into the mobile application market.  

However, developers wishing to target both platforms face portability issues that can 

significantly increase total development costs.  These specific challenges are addressed in 

Section 2. 

This problem report seeks to identify a possible strategy to greatly decrease total development 

costs by increasing the portability of each application’s codebase.  This is addressed through a 

formal study involving the development of multiple versions of the same mobile application on 

both the Android and iOS platforms.  These applications will serve as clients for a shared web 

service.  The design of this study and the software requirements for the web service and the 

mobile applications are detailed in Section 3.  Detailed information on the implementations of 

these applications to satisfy the study requirements are in Section 4.  These mobile applications 

are then analyzed in Section 5. 

The rest of the problem report is structured as follows: Section 6 identifies areas for potential 

future research, Section 7 offers conclusions, and references are listed in Section 8. 

  



2 

 

2. Problem Description 

Developers wishing to simultaneously target both Android and iOS face numerous challenges in 

the area of code portability.  For starters, the developer has to account for a wide variety of 

physical devices each with varying capabilities.  This is less of an issue with iOS given all of the 

supported devices are manufactured by Apple, and hardware configuration changes are limited 

over the course of years.  On Android this is a much bigger challenge given the wide range of 

hardware manufacturers that supply Android-powered devices. 

However, the most glaring challenge is that each platform has its own unique software 

development kit that uses its own programming language.  Android is powered by the Dalvik 

virtual machine [3].  Programs are written in the Java language.  Development is usually done 

using the cross-platform Eclipse IDE, but it is not required.  This is in complete contrast to iOS 

applications which are developed using Objective C [4].  Additionally, Apple requires the use of 

the Mac OS X-exclusive XCode IDE. 

Given these challenges, many third party solutions have been created with the promise of 

allowing native cross-platform development with a shared codebase [5][6][7][8]. These solutions 

generally require constant updating to keep up with nuances introduced in each revision of the 

target platform.  Developers may be hesitant to be locked in to a third party toolkit that could 

potentially be abandoned, leaving their previously developed applications possibly incompatible 

with these updates.  Additionally, many of these solutions have restrictive licenses or high 

monetary costs that may be prohibitive to small developers. 

For example, Marmalade [6] allows a developer to build applications for both platforms with a 

single build process.  This allows a developer to generate iOS applications without having Mac 

OS X.  However, it uses C++ and development is done entirely within the confines of the 

framework’s libraries.  This means if a developer wishes to no longer use the framework, the 

code would need to be rewritten.  Additionally, there is currently a $149 per-seat annual license 

fee if the developer is targeting Android and iOS.  Targeting additional platforms and removing 

the Marmalade splash screen results in a $499 per-seat annual fee. 

Titanium [8] applications are developed in a custom IDE using JavaScript.  However, building 

an iOS application still requires Mac OS X.  Despite being written in JavaScript, the code still 



3 

 

uses the libraries that are exclusive to this framework.  This results in the same lock in problem 

that exists with the other third party solutions.  Should development on the framework cease, or a 

developer simply wants to stop using the framework, the code would have to be almost entirely 

rewritten. 

Ideally, a developer would like to be able to develop native mobile applications for these 

platforms with a large amount of the total code being shared between both versions of the 

application.  This problem report presents a study examining a potential strategy to achieve this 

very goal.  The study design is described in the next section. 

   



4 

 

3. Study Design 

To study our goal of analyzing portability strategies across the platforms, a study has been 

designed.  The study created duplicate versions of the same mobile application for the different 

platforms using different development strategies.  These mobile applications serve as clients for 

a shared web service.  This allows a common set of requirements that all of the implemented 

mobile applications will have to fulfill.  This is also reflective of the nature of many modern 

mobile applications which simply serve as interfaces to a pre-existing service such as social 

networking, media streaming, or online banking.  In this study, a simple text note 

synchronization service is used. 

In this study four separate mobile applications have been developed.  The Android and iOS 

operating systems are targeted.  Two of these applications were developed with completely 

separate codebases using the official SDKs for each platform.  The other two applications were 

developed with the goal of sharing as much of a codebase as possible, thereby maximizing 

portability between these two distinct platforms. 

A high level diagram of how data travels between the web service and a mobile client is shown 

in Figure 1. The requirements for both the web service and the mobile applications are detailed 

in the following sections. 

Database(s)Mobile Client Web Server(s)

Internet Data

Query

XML Response
XML Response

HTTP RequestHTTP Request

 

Figure 1 – Notes system overview 

3.1. Web Service Requirements 

The web service provides the capability of managing a list of notes for multiple users.  This is 

similar to note list applications present on current mobile devices, but in this case the application 

will interact with the web service to synchronize the list of notes for each user.  This allows the 

user to login on another device to retrieve and edit their same list of notes.   



5 

 

Each note has a unique ID number, a short name, and a text body.  Each note and each user is 

stored in a relational database.  The database model used by the web service is shown in Figure 

2.  This design allows multiple owners for each note, but this is not in the requirements of the 

mobile application detailed in the next section. 

 

Figure 2 – Notes Web Service – Database Model 

The service handles incoming requests through regular HTTP GET or POST methods.  The exact 

method depends on the action being handled.   The service must handle the request and response 

with a properly formatted XML response.  The content of this response depends on the action 

being performed, and may vary in some actions depending on whether the operation was 

successful.  It is up to the client application to handle all possible responses.  Examples of 

generic success and error messages are shown in Figure 3and Figure 4, respectively. 

<?xml version="1.0"?> 

<response type="success"> 

   <success> 

      <description>The operation was successful.</description> 

   </success> 

</response> 

Figure 3 – Generic Success XML Message 

<?xml version="1.0"?> 

<response type="error"> 

   <error> 

      <description>An unspecified error occurred.</description> 

   </error> 

</response> 

Figure 4 – Generic Error XML Message 

The web service is responsible for handling the following actions.  The actions are listed as well 

as the type of HTTP request required (GET or POST) and the relative URL that will be mapped 

to each action.  For this listing, a base URL to the service is assumed and only the end of the 



6 

 

URL relevant to the listed action is presented.  For example, the login action’s full URL could be 

“http://my.ser.ver/NotesService/login” but only “( /login )” is listed in the description. 

 Login – POST – ( /login ):  This handles an incoming request containing a username and 

password combination.  The password will be encrypted by the service and checked against 

the existing username and password combinations in the database.  If the combination is 

found, the service establishes a new session locally for the authenticated user and returns a 

success message in XML.  If the combination is not found, an error message is returned. 

 Logout – GET – ( /logout ):  This destroys the session for the currently authenticated  user.  

This means any subsequent request from the same client will not be properly authenticated 

with logging in again.  A success or error message is returned. 

 Register User – POST – ( /register ): This handles registering new users for the service.  A 

desired username and password combination is supplied from the client.  The service checks 

if the username is already in use and returns an error message if this is the case.  Otherwise, it 

creates a new user account with the supplied password.  A session is then created for this new 

user so they will already be authenticated without having to issue a login request.  A success 

message is then returned. 

 Get Note – GET – ( /notes/get/<id> ):  A given note ID number is supplied.  The service 

checks if the current user is authenticated, and then if they are the owner of the note with the 

given ID.  If the user is the owner, then the note is returned.   This format of this message is 

the same as the “List Notes” action and is shown in Figure 5, but it will only contain one 

note.  Otherwise, an error message is returned. 

 List Notes – GET – ( /notes/list ):  The service checks if the user is authenticated.  If so a list 

of all of the notes this user owns is returned.  The XML message for this note list is shown in 

Figure 5.  Otherwise, an error message is returned. 



7 

 

<?xml version="1.0"?> 

<notes> 

   <note id="1" name="my first note"> 

      <text><![CDATA[This is the full text of my first note.]]></text> 

   </note> 

   <note id="2" name="my second note"> 

      <text><![CDATA[]></text> 

   </note> 

   <note id="3" name="my third note"> 

      <text><![CDATA[Full text of third note.]></text> 

   </note> 

</notes> 

Figure 5 – Note List XML 

 Add Note – POST – ( /notes/add ): A note name and body text are supplied.  The service 

checks if the user is properly authenticated and then creates a new database record containing 

this name and text.  It then uses the generated ID of the new note to assign the current user as 

its owner.  If these operations are completed, a success message is returned.  Otherwise, an 

error message is returned. 

 Update Note – POST – ( /notes/update ):  A note ID, note name, and note body text are 

supplied.  The service checks if the user is authenticated and if they are the owner of the note 

with the given ID.  If so, the note is updated in the database to use the new name and text 

values that were supplied.  A success message is returned if the operation completed, 

otherwise an error message is returned. 

 Delete Note – GET – ( /delete/<id> ):  A note ID is supplied.  The service checks if the 

current user is authenticated and if they own the note with the given ID.  If they are the 

owner, the note is deleted from the database.  If the operation is a success, a success message 

is returned, otherwise an error message is returned. 

3.2. Mobile Application Requirements 

To handle all of the capabilities of the web service, each application has a set of four common 

forms.  This keeps the overall design of the applications as close as possible to more accurately 

track the differences in developing multiple versions of what is essentially the same application.  

These common forms will now be described.  Implementations of each form along with 

screenshots are in Section 4. 



8 

 

The first form a user will see is the login form.  This form asks for a username and password 

combination.  The user can attempt to log in to the notes service from this screen.  This screen 

handles sending the login request to the web service, reading the response, and acting 

appropriately.  If the web service responds with a success message (which indicates the 

username and password combination was found), the user is sent to the notes list screen.  

Otherwise, an error message is displayed and the user remains on the login form. 

The login form will also present the user with an option to save their username and password.  If 

this option is selected, the username and password will be saved to the local device.  If the user 

launches the application at a later time and these credentials are present, the login form will be 

bypassed and the user will be logged in with the stored username and password.  When the user 

logs out, these credentials will be deleted so that a new username and password can be entered. 

From the login form the user is also presented with the option to create a new user account.  If 

the user chooses to do this, they will be sent to the registration form.  This form is similar to the 

login form.  The user is asked to enter a desired username and password.  They are also asked to 

confirm their password choice.  The user can then submit this request for a new account using 

this form.  The form should confirm that none of the fields are blank and that the password and 

password confirmation strings match.  If not, the user should be presented with an error before a 

notes service request is ever issued.  If the fields are correct, then a request to the notes web 

service is created.  If the username is already in use, the web service returns an error, and the 

user is kept on the registration form.  If the registration was a success, the user is moved to the 

notes list screen. 

The notes list screen shows the user a list of their notes.  This list is restricted to only show the 

notes that belong to the authenticated user.  From this screen the user can choose to create a new 

note, or select an existing note to edit.  With either of these actions, the user will move to the edit 

note screen.  This list screen also presents the user with the option of logging out.  Choosing this 

action will result in a logout request being sent to the web service, and the user will be returned 

to the login screen. 

The edit note screen allows a user to create a new note or edit an existing note.   This screen has 

input fields that allow the user to enter a note name and text.  If the action is editing an existing 



9 

 

note, then the form fields will be populated with the currently selected note name and text.  

When the user chooses to save the note, the application will send a request to the web service.  

The exact request depends on if the user is editing an existing note, or adding a new one. 

The application also must allow the user to delete existing notes.  The design decision for how to 

handle this is left up to each implementing application since the manner in which this operation 

is typically handled varies by platform. 

  



10 

 

4. Application Implementations 

The following sections detail the implementations of each part of the study: the shared notes web 

service, the two fully native mobile applications, and the two native mobile applications 

developed with portability in mind.  More emphasis is placed on the portable implementations 

since this is the primary focus of the study. 

4.1. Notes Web Service 

This web service is powered by the web.py framework [9].  This is a minimalist Python 

framework that directly handles URL mapping and maps requests to Python classes based on the 

URL and the type of HTTP request.  Additionally, the framework provides a flexible template 

system along with database connectivity libraries to handle transparent database access. 

The MySQL database system was used to store the database tables used in the notes service.  

However, the web.py framework allows transparent access to different database software (such 

as PostgreSQL), so this could be changed depending on the installation target.  The framework 

provides methods for sanitizing input used in database queries to prevent injection attacks.  An 

example of this is shown in Figure 6 

The URL mapping is rather straightforward.  We define each possible URL path is defined to use 

a certain class, and then the exact method used within that class depends on the type of HTTP 

request.  For example, a URL path of “/notes/list” is mapped to the class Notes.List  (that is, the 

class List defined within the class Notes – this is a common convention used with this 

framework).  Since this is a GET request type, it is mapped to a method named GET in the List 

class.  The code for this action is shown in Figure 6. This enables us to easily handle all of the 

required actions for the web service. 



11 

 

class List: 

        def GET(self): 

            ''' Returns all notes in the database and returns  

            an XML document listing them. ''' 

             

            web.header('Content-Type', 'text/xml') 

             

            ''' User ID and name from session information ''' 

            (userid, username) = getUser() 

                         

            if userid is None: 

                ''' This indicates that the userid has not yet been set.   

                So, the user has not logged in yet. ''' 

                return renderxml.error('User is not logged in.') 

             

            notes = db.query("""SELECT ID, Name, Text  

                FROM Notes N  

                LEFT JOIN UserNotes UN ON N.ID=UN.NoteID 

                WHERE UserID=$id""", vars={'id':userid}); 

             

            return renderxml.notes(notes) 

Figure 6 – Notes Web Service – Note List method 

Generating XML output is also simplified by using web.py.   The system provides simple 

constructs for handling the variables and iteration necessary for the notes web service.  The 

template used to generate error messages is shown in Figure 7.  This shows the use of a variable 

that already has a default value.  In the List method in Figure 6, if the user is not logged in, this 

error description variable is set to a more useful error description, otherwise the default 

unspecified message would be shown.  The note list template is shown in Figure 8.  This shows 

iteration over the array named “notes.”  Each element in the array has object properties named 

ID, Name, and Text. 

$def with (description="An unspecified error occurred.") 

<?xml version="1.0" encoding="UTF-8"?> 

<response type="error"> 

 <error> 

  <description>$description</description> 

 </error> 

</response> 

Figure 7 – Notes Web Service – Error XML template 



12 

 

$def with (notes) 

<?xml version="1.0" encoding="UTF-8"?> 

<notes> 

$for note in notes: 

    <note id="$note.ID" name="$note.Name"> 

        <text><![CDATA[$note.Text]]></text> 

    </note> 

</notes> 

Figure 8 – Notes Web Service – Note list template 

 

4.2. Native Android Application 

The native Android application was able to be fully developed using only standard libraries 

present in the regular Android SDK.  No external libraries were used. 

Network communication is handled through the Apache HTTP component Java libraries that are 

natively supported on the Android platform.  This supports the GET and POST request methods 

to interact with the notes web service.  The resulting XML string is parsed by the W3C DOM 

libraries that are also supported natively on Android. 

The action of deleting notes is handled through a long press in the note list view.  The user 

performs a long press on a note in the list, and they are presented with two options in a 

contextual menu.  This context menu has delete and edit options.  The standard menu button on 

Android devices is also wired up to display a menu on the notes list screen. 

The application is shown running in the Android 2.3 emulator in Figure 9. 



13 

 

       

Figure 9 – Native Android Application – Login, Register, List, and Edit screens 

 

4.3. Native iOS Application 

As with the Android version, the native iOS application was developed without using any 

external libraries. 

The native NSURLConnection class is used to handle HTTP GET and POST requests to the 

notes web server.  The resulting XML string from the web service is parsed by a custom class 

using the standard NSXMLParser class. 

Deleting a note is handled through a horizontal swipe motion over an existing note in the note 

list.  The standard iOS option of presenting a delete button in the list is shown.  If the user 

presses this button, the note is deleted.  Also in keeping with general iOS design standards, 

controls related to saving data are presented in the navigation bar near the top of the screen. 

The application is shown running in the iPhone simulator in Figure 10 



14 

 

 

Figure 10 – Native iOS Application – Login, Register, List, and Edit screens 

4.4. Portable Codebase 

The goal of the two previously described applications was to provide a purely native baseline 

when targeting the Android and iOS platforms.  The next two applications were developed with 

the intention of having as much shared code as possible, thus achieving a high degree of 

portability.   

To achieve this goal, the applications take advantage of the fact that both of the targeted 

platforms have built in web browsers.  More specifically, they have controls that can be 

embedded into native applications that provide this web browser functionality without having to 

separately launch the platform’s web browser application.  This allows us to still have a native 

application that resides on the user’s mobile device, but is essentially only acting as a single 

window to our forms.  These forms can then be reused across both of our targeted platforms. 

Using these controls, we are able to embed HTML pages with CSS styling to provide the forms 

that we need in our notes client applications. To provide the actual application logic necessary to 

handle functions such as sending requests to the notes web service, we are able to use JavaScript.  

The jQuery JavaScript toolkit was used in the interest of total development time, but it is by no 

means a requirement. 



15 

 

The web controls on both platforms allow files to be loaded either locally or remotely from a 

web server.  In the interest of performance, the applications in this study bundle all of the 

necessary files locally with the application.  This prevents having to load the files from a remote 

web server each time the application is run.  Since these are mobile devices, network 

connectivity may often be limited or unavailable. 

The following sections describe the modifications that were necessary for each platform to 

provide the required functionality that was already present in our fully native applications.  

These are the modifications are the additions to a “bare bones” project generated by each 

platform’s SDK. 

4.4.1. Android Application Modifications 

Only one Android activity has to be created to achieve our goal of use the shared HTML and 

JavaScript approach.  This full class definition is shown in Figure 11.   

This is all that is necessary to add to the code that is already generated by a new project using the 

Android SDK in the Eclipse IDE.  The common HTML, CSS, and JavaScript files are copied to 

the application’s assets folder within the Eclipse project.  This application is shown running on 

the Android 2.3 emulator in Figure 12. 



16 

 

public class NotesWebActivity extends Activity { 

  

    @Override 

    public void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState);         

         

        // Create the WebView 

        WebView webview = new WebView(this); 

        setContentView(webview);         

         

        // Puts the scrollbar on top of the WebView  

        // so it will fill the entire screen. 

        webview.setScrollBarStyle(View.SCROLLBARS_INSIDE_OVERLAY); 

         

        // Enable JavaScript and DOM storage in the WebView 

        webview.getSettings().setJavaScriptEnabled(true); 

        webview.getSettings().setDomStorageEnabled(true); 

         

        // Prevent caching so our sessions will work correctly. 

        webview.getSettings().setCacheMode(WebSettings.LOAD_NO_CACHE); 

         

        // Handle JavaScript alert() functions with an Android message box. 

        webview.setWebChromeClient(new WebChromeClient() { 

         @Override 

         public boolean onJsAlert(WebView view, String url,  

                                     String message, JsResult result) { 

                return super.onJsAlert(view, url, message, result); 

           } 

        }); 

         

        // Load the login HTML form from the bundled assets.         

        webview.loadUrl("file:///android_asset/html/login.html"); 

         

    } 

} 

Figure 11 – Portable Android Application Main Activity Code 

       

Figure 12 – Portable Android Application – Login, Register, List, and Edit screens 



17 

 

4.4.2. iOS Application Modifications 

As with the Android application, the modifications needed for the portable iOS version of the 

application are rather minimal.  The main AppDelegate class needs to be edited to create the 

UIWebView and load the local login form.  This code is listed in Figure 13. 

Additionally, during initialize of the class, the application is directed to enable cookie sharing 

between sessions.  This would not necessary if we were loading the files from a remote web 

server in the UIWebView.  However, since we are mixing requests of locally bundled files with 

JavaScript code that calls a remote web service, we need this cookie sharing enabled.  Otherwise, 

our session would not persist with each subsequent remote request.  This leads to a situation 

where the user is logged in through the login form, then when the note list screen is loaded, they 

will receive an error message saying they are not logged in despite being authenticated during 

the login request.  The local client in this situation is not aware of the remove session key that 

had been established.  This also causes the web service to continue creating new sessions for 

each request, even if they are originating from the same client. 



18 

 

- (id) init 

{  

    // Allow cookies to be shared between requests. 

    // This is needed to use local html files with remote sessions. 

    NSHTTPCookieStorage *cookieStorage = [NSHTTPCookieStorage 

sharedHTTPCookieStorage]; 

    [cookieStorage setCookieAcceptPolicy:NSHTTPCookieAcceptPolicyAlways]; 

     

     

    return [super init]; 

} 

 

- (BOOL) application:(UIApplication*)application 

didFinishLaunchingWithOptions:(NSDictionary*)launchOptions 

{     

     

    // Create UIWebView control with app’s screen bounds 

    CGRect viewBounds = [[UIScreen mainScreen] applicationFrame]; 

    self.window = [[UIWindow alloc]  

                   initWithFrame:[[UIScreen mainScreen] bounds]]; 

    UIWebView *webView = [[UIWebView alloc] initWithFrame:viewBounds]; 

     

    // Generate a request from the local file path 

    NSString *filePath = [[NSBundle mainBundle] pathForResource:@"login" 

                          ofType:@"html" inDirectory:@"www"]; 

    NSURL *url = [NSURL fileURLWithPath:filePath]; 

    NSURLRequest *request = [NSURLRequest requestWithURL:url]; 

     

  

    // Load the request in the WebView and make it visible. 

    [webView loadRequest:request]; 

     

    [self.window addSubview:webView]; 

    [self.window makeKeyAndVisible]; 

     

    return YES; 

} 

 

Figure 13 – Portable iOS AppDelegate implementation 

This application is shown running in the iPhone simulator in Figure 14. 



19 

 

 

Figure 14 – Portable iOS Application – Login, Register, List, and Edit screens 

 

  



20 

 

5. Portability Analysis 

The results of the study are very promising.  With very little extra effort, a large portion of the 

codebase was able to be shared between both platforms.  Table 1 shows each implemented 

mobile application’s total lines of code.  This line count includes all code source files and form 

layout files.  It also shows the number of lines of code shared in the portable version along with 

how much of the total codebase this shared code encompasses. 

Table 1 – Lines of code in each application 

 
Notes NotesWeb 

 
Total Total Unique Shared % Shared 

Android 
         

1,587  
            

824  
            

119  
            

705  85.56% 

iOS 
         

2,108  
            

878  
            

173  
            

705  80.30% 

 

As the results show, the vast majority of the code created in the portable NotesWeb applications 

is shared.  This shows that it is entirely possible to create a highly portable codebase for our 

example application.  It is also interesting to note that the total lines of code written are 

significantly lower with the portable version.  

This analysis shows that using standard web development technologies is a highly appealing 

strategy to increase overall portability.  All of the requirements detailed in Section 3.2 were able 

to be implemented using primarily the shared codebase containing only HTML and JavaScript.  

The application’s requirements include common requirements in many mobile applications.  

These include network connectivity and handling input and output with an existing web service. 

The biggest downside to this portable solution is in the area of performance.  Using JavaScript in 

an embedded web browser is noticeably slower than using native code for each platform.  With 

this particular application, the difference is not significant.  More computationally intense 

operations would obviously benefit from remaining native.  However, both platforms offer 

means to mix both approaches.  That is, native code can be written to directly interact with what 

is being presented in the web view.  This means that this portable approach does not have to be 

completely abandoned if these more intense operations only make up a few use cases in the 

application.  



21 

 

6. Future Research 

Further study could be done by porting the mobile applications to additional platforms such as 

Blackberry and Windows Phone.  While these platforms do not enjoy the same large market 

share as Android and iOS, investigating how easily the shared codebase could be integrated with 

these platforms may serve to strengthen the argument found in this study that standard web 

development technologies offer a solid strategy for developing highly portable mobile 

applications. 

There are additional features of HTML5 that could potentially be used to enhance portability of 

more complicated mobile applications.  Some of these features could include local storage of 

data and using location data (such as capturing GPS coordinates on the mobile device). 

Along this same line, it could also be beneficial to study portability issues that exist in 

specialized areas such as game development.  OpenGL ES is supported on both platforms.  

Furthermore, it is possible to use C++ code in iOS applications out of the box, and it can also be 

used on the Android platform by using the Android NDK.  This could result in some amount of 

shared code between platforms without having to resort to a third party framework.  

Additionally, WebGL currently has varied amounts of support on both platforms, but it could 

still be worth researching as a potential future alternative to fully native implementations. 

Comparisons to existing third party solutions could be evaluated.  This could help show how 

cost-effective in terms of both monetary cost as well as development effort some of these 

solutions may be when compared to developing the applications using the standard software 

development kits.  



22 

 

7. Conclusion 

This problem report has shown that it is entirely possible to develop a highly portable mobile 

application codebase targeting the Android and iOS platforms without resorting to third party 

tools.   

A study was designed using a mobile application design that acted as a client for a web service.  

This application was implemented for the Android and iOS platforms with two applications for 

each.  The first application was developed using a purely native approach with the respective 

software development kits for each platform.  The second application was developed with the 

goal of achieving a high degree of portability by employing standard HTML and JavaScript.   

The resulting applications were native applications that ran directly on mobile devices.  The 

portable version of the application resulted in at least 80% of each application’s total lines of 

code being shared between both the Android and iOS versions compared to the purely native 

implementations that shared no code.  



23 

 

8. References 

[1] “The NPD Group: Apple Leads Mobile Handsets in Q4 2011, But Android Attracts More 

First-Time Smartphone Buyers.” [Online]. Available: 

https://www.npd.com/wps/portal/npd/us/news/pressreleases/pr_120206. 

[2] “comScore Reports January 2012 U.S. Mobile Subscriber Market Share - comScore, Inc.” 

[Online]. Available: 

http://www.comscore.com/Press_Events/Press_Releases/2012/3/comScore_Reports_January

_2012_U.S._Mobile_Subscriber_Market_Share. 

[3] “Android SDK | Android Developers.” [Online]. Available: 

http://developer.android.com/sdk/index.html. 

[4] “iOS Dev Center - Apple Developer.” [Online]. Available: 

https://developer.apple.com/devcenter/ios/index.action. 

[5] “Ansca Mobile’s cross-platform mobile app development tool.” [Online]. Available: 

http://www.anscamobile.com/corona/. 

[6] “Mobile Applications Development, iPhone & Android App Development.” [Online]. 

Available: http://www.madewithmarmalade.com/. 

[7] “PhoneGap.” [Online]. Available: http://phonegap.com/. 

[8] “Titanium Mobile Platform | Appcelerator.” [Online]. Available: 

http://www.appcelerator.com/products/titanium-mobile-application-development/. 

[9] “Web.py framework.” [Online]. Available: http://webpy.org/. 

  



24 

 

 

 


